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bstract

This article describes a methodology to model the degree of remedial action required to make short stretches of a roadway suitable for dangerous
oods transport (DGT), particularly pollutant substances, using different variables associated with the characteristics of each segment. Thirty-one
actors determining the impact of an accident on a particular stretch of road were identified and subdivided into two major groups: accident
robability factors and accident severity factors. Given the number of factors determining the state of a particular road segment, the only viable
tatistical methods for implementing the model were machine learning techniques, such as multilayer perceptron networks (MLPs), classification

rees (CARTs) and support vector machines (SVMs). The results produced by these techniques on a test sample were more favourable than those
roduced by traditional discriminant analysis, irrespective of whether dimensionality reduction techniques were applied. The best results were
btained using SVMs specifically adapted to ordinal data. This technique takes advantage of the ordinal information contained in the data without
enalising the computational load. Furthermore, the technique permits the estimation of the utility function that is latent in expert knowledge.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The safety and efficiency of road transport is considered a
trategic objective in countries like Spain, in which the pro-
ortion of goods transported by road is about 92%; 9% of
oad-transported goods, moreover, are classified as dangerous
oods. The transportation of dangerous goods by road implies
risk for both humans and the environment, in that an accident
ay cause extensive material damage and may even endanger

ives. For this reason, there is a growing interest among both pub-
ic and private entities (e.g. insurance companies) in studies to
ssess the risks associated with dangerous goods transportation
DGT). Authors such as Glickman and Erkut [1] and Cassini [2]

etermined risk in terms of traffic volume and population density
mplied by a road accident involving the release of a dangerous
ubstance. Other authors, such as Erkut and Verter [3], Lovett
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t al. [4] and Fabiano et al. [5] took a different approach, and
ndeavoured to reduce risk by selecting alternative, lower-risk
outes. Huang et al. [6] integrated GIS and genetic algorithms
o evaluate the risk of hazardous materials transportation and
o plan safer alternative routes. Purdy [7] analysed the risk of
ransporting hazardous materials by road or rail in Great Britain
nd concluded that the inclusion of motorist and rail passenger
opulations significantly affected the calculated risk levels and
hat the safe routing of materials with large hazard ranges may
e more easily achieved by road.

Of particular interest are reports published by the US
epartment of Transportation, such as their Guidelines for
pplying Criteria to Designate Routes for Transporting Haz-

rdous Materials (US Department of Transportation) [8], which
rovide an interesting overview of advances in terms of the
ssessment of the level of risk associated with dangerous goods
ransport. More recently, Martı́nez-Alegrı́a et al. [9] proposed

conceptual model for identifying the stretches of roads within
network with the greatest accident risk. These authors took

nto account factors such as probability of occurrence, accident
ype and the product transported, as also the vulnerability of the
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nvironmental and population elements exposed to each kind of
azardous substance transported. In many cases the stretches of
oad were over 100 km long since, given the information used to
alculate accident probability, a more detailed analysis was not
ossible. This study can be viewed as a continuation of the study
y Martinez-Alegrı́a et al. [9]. Its aim is not to establish the level
f risk for a road, which has already been studied, but rather to
etermine in detail – based on an analysis of 31 factors relating
o the road and its physical surroundings – whether or not a
tretch of road is suitable for transporting pollutant substances
data for the variables were collected at 100-m intervals).

The layout of the document is as follows: firstly, we present
ur model for evaluating the risk associated with an accident
nvolving the transportation of pollutant substances. Next, we
escribe ordinal support vector machines (SVMs), a variation on
he SVMs [10] obtained by considering a different loss function
hat penalises erroneous orderings. We then apply the ordinal
VMs to the problem of estimating our risk model, and compare

he results to those obtained using other statistical classifica-
ion techniques. Finally, we draw our conclusions on the work
escribed.

. Definition of the model

.1. Impact factors

The initial model of the risk associated with an accident
nvolving dangerous goods transportation along a particular
tretch of roadway was constructed by combining elements of
he Martı́nez-Alegrı́a et al. [9] conceptual model with specific
actors that, in the opinion of experts, affect risk on particular
tretches of roadway.

Thirty-one impact factors were identified and subsequently
ubdivided into two main groups, namely accident probability
actors and accident severity factors, discussed in turn below.

.1.1. Accident probability factors
A total of 21 factors were considered as affecting the probabil-

ty of the occurrence of an accident. These factors, which reflect
he specific features of a stretch of roadway, are classified in six
roups, as follows:

a) Design: Road width, lane width, existence of slow lanes,
types of feeder roads, protective barriers, and quality of
drainage ditches and culverts. Taken as representing the low-
est level of risk was a value of 7 m for road width, and a
value of 1.5 m for lane width (values based on the Spanish
road network). Lower values represent an increased risk,
which results primarily from a reduction in the distance
between vehicles and the reduced possibilities of avoiding
an accident. The fact that a road has a slow lane means that
faster vehicles are not necessarily affected by slower vehicles
ahead (a major cause of accidents involving heavy vehicles).

Feeder road types were graded in terms of a range of values,
with the lowest risk associated with acceleration lanes, and
the highest risk associated with direct intersections between
feeder and main roads. Since protective barriers in good con-
us Materials 147 (2007) 60–66 61

dition prevent animals or pedestrians from straying onto a
road and causing an accident, higher values were assigned
for adequate protective barriers in good condition, and lower
values were assigned to protective barriers in poor condition
and/or barriers that failed to fulfil their function; the lowest
value was assigned when no protective barriers existed. The
existence of suitably sized culverts and ditches determines
the rainwater drainage capacity of a stretch of roadway, and
prevents films of water accumulating on the road surface,
with the resulting aquaplaning risk implied by loss of adher-
ence.

b) Construction morphology: Road condition, slope, altitude,
exposure to sun and exposure to winds. Compared to wider
curves, tighter curves are more likely to cause a loss of
grip by a vehicle’s tyres as a consequence of centrifugal
forces. Slope is particularly likely to affect accident rates
for vehicles travelling downhill. Long and gradual slopes
place greater demands on the braking systems of heavy
vehicles, with a greater likelihood of brake failure. Higher
altitudes imply a harsher climate, and greater likelihood of
ice and snow. Exposure to sun affects the probability of an
accident, in that asphalt that does not receive direct sun-
light is more likely to remain wet or to develop icy patches
(which again affects tyre grip). Our area of study was located
in the northern hemisphere, at latitude 40◦; shadier areas
were located between 330◦NW and 30◦NE and sunnier areas
between 240◦SE and 300◦SW. Finally, greater exposure to
wind also increases accident risk. Stretches of roadway that
are exposed to strong side winds, particularly when these
stretches alternate with sheltered stretches, are high acci-
dent risk areas. The risk associated with such exposed areas
is determined by orthogonal orientation to prevailing winds
with a west-to-east component. This factor, moreover, is
aggravated by construction infrastructures, given that expo-
sure to winds is greater on entry to and exit from bridges,
viaducts and tunnels.

c) Signalling and signposting: Painted road signs and lateral
signs and signals. The type and condition of signalling
and signposting on a road is determined above all by the
field of vision in different weather conditions (rain, snow,
fog, etc.), by light conditions at twilight, and by reflectiv-
ity at night. Elements that considerably reduce the risk of
accidents include the existence of overhead neon-lit pan-
els containing frequently updated information, painted road
signs with good reflectivity, and legible lateral signs and
signals. Moreover, road surfaces painted with anti-slip paint
will also reduce accident rates. Higher values were assigned
to those stretches of road without any signal and the low-
est value is assigned to those stretches well signalled and
painted.

d) Type of road works: Existence of specific kinds of con-
structions on a stretch of roadway, such as earthworks,
embankments, tunnels, viaducts, retaining walls, etc. The

maximum value is applied if traffic flow is affected by road-
works and/or if there is only one-way traffic. This value
diminishes to the minimum value (which is assigned when
there are no roadworks), as roadwork bearing on traffic
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movement is reduced. Medium values are assigned when
the roadworks only affect the hard shoulder.

e) Visibility threshold: Described in terms of five numeric inter-
vals (0–100 m, 100–200 m, 200–500 m, 500–1000 m, and
over 1000 m). The field of vision has a direct bearing on
the possibility of an accident, as it directly affects a driver’s
reaction time in riskier vehicle manoeuvres.

f) Condition of the road: The condition of the asphalt (drainage
capacity, irregularities, defects and potholes) has a bearing
on the level of accident risk. If a road surface is well main-
tained, accident risk from skids, for example, is reduced.

.1.2. Accident severity factors
Severity factors comprise the inherent damage associated

ith the physical and chemical characteristics of the pollutant
ubstances being transported, the dangers associated with the
ype of accident, and vulnerability factors associated with the
nvironment and humans. The first two factors were excluded
n this work since they had no bearing on the comparative study
hat we conducted. For the third factor, we considered 10 factors
rouped into the following 3 categories:

a) Land use: A distinction was made between irrigated land
and non-irrigated land, between forested land and waste-
land. Moreover, the presence of building and residential
areas, industrial or mining areas, infrastructures and vul-
nerable population elements were also taken into account.
Maximum values were assigned to cultivated irrigated land,
to woods, and to high concentrations of dwellings in the
vicinity. Minimum values were assigned to uncultivated
non-irrigated land, to wasteland, and when there were no
inhabited houses in the vicinity.

b) Natural land morphology: Stability of the slopes or embank-
ments, and natural slope of the land. The stability of
excavations and embankments is likely to be endangered by
an accident, which might even render a roadway unusable.
The natural slope of the terrain in which a road is located
has a multiplying effect on underlying risk. A fuel spillage
on a steep slope, for example, is likely to spread beyond the
road and into other vulnerable elements such as rivers or
aquifers.

c) Surface and subterranean hydrology: Lithological units
containing aquifers located in the catchment area of spillage
are highly vulnerable, given their importance as sources and
reserves of water for different uses. The vulnerability of
lithological units was evaluated on the basis of permeabil-
ity and the type of permeability mechanism (intra-granular
cracks or fissures), as these characteristics to a large extent
determine a contaminated aquifer’s capacity for recovery.
The vulnerability of water sources was determined princi-
pally by their horizontal distance from the road. This value
was weighted, moreover, according to the runoff gradient
from the centre of the road to the water source.
Our model, consequently, takes the following form:

= f (X1, . . . , Xd) (1) i
us Materials 147 (2007) 60–66

here Xi, i = 1, . . ., d are the 31 factors described above and
here R is an ordinal variable that measures the degree of suit-

bility of the road for transporting pollutant substances. The
ariables Xi, i = 1, . . ., 31 were coded on ordinal scales of 0–10,
ith 0 representing the lowest level of hazard and 10 the highest

evel of hazard.
R, in turn, was coded on an ordinal scale of 1–3, which indi-

ated the remedial work to be carried out on the roadway so
quip it for pollutant substances transportation (the higher the
ating, the less the number of remedial actions required).

Given the dimensions of the problem, the only viable sta-
istical methods for implementing a non-linear risk model
re machine learning techniques such as classification trees
CARTs) [11], multilayer perceptrons (MLPs) [12] and support
ector machines [13–15]. The estimation of the model (1) can be
iewed as a classification problem supervised by an expert. How-
ver, the above coding for R introduces a ranking for the different
tretches of road in terms of their suitability for transporting pol-
utant substances; this is ignored by classification techniques by

inimising the classification error rate criterion. By definition,
nder this criterion, two classification rules are equivalent if they
esult in the same error rate. However, the classification approach
ails to take account of any possible violations in the order of
he examples.

For this reason, we used SVMs for ordinal data (ordinal
VMs), following the approach developed by Herbrich et al.
16], with a view to taking advantage of the ordinal nature of the
nformation contained in the data, while minimising the compu-
ational load. Furthermore, the SVM approach permits the utility
unction that is latent in expert knowledge to be estimated. The
asic concepts of ordinal SVMs are described in the next section.

.2. Ordinal support vector machines

Assume a sample of independent observations {(Xi, Yi)}ni=1
here Xi ∈ Ω ⊂ Rd , Yi ∈ Θ are random variables and where
= {r1, . . ., rc} is a set of ordered ranks ri > rj if i > j, such

hat rc � rc−1 � · · · � r1 where � is a preference relation with
trict order properties (irreflexive, asymmetric and transitive).

Assume likewise, that the ranks ri assigned by the expert are
he result of a latent utility function U : Ω → R, in such a way
hat, given a point x ∈ Ω, the expert assigns rank via:

(x) = rj ⇔ U(x) ∈ [θ(rj−1), θ(rj)], (2)

here θ(ri) ∈ R, j = 1, . . ., c are the values used implicitly by the
xpert.

Rather than a classical loss function �0−1(y, ŷ) = 1{ŷ 	=y} that
ust penalises classification errors, we define the following loss
unction [16] with a view to penalising violations in the order
roduced by an ordering rule g : Ω → Θ with ŷ = g(x):

(y , y , ŷ , ŷ ) =

⎡
⎢⎣

1, if yi ≺ yj and not ŷi ≺ ŷj

1, if y ≺ y and not ŷ ≺ ŷ (3)
pref i j i j j i j i

0, otherwise

In this framework, the problem of determining the best order-
ng rule for the points in Ω can be viewed as a classification
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roblem for the space Ξ ⊂ Ω × Ω containing all the different
airs of points in Ω, with the label z ∈ {−1, +1} defined as
with i 	= j):

ij = z(xi, xj) =
{

+1, if U(xi) > U(xj)

−1, if U(xj) > U(xi)

∣∣∣∣∣
= sign(U(xi) − U(xj)) (4)

he sample data are now: {(xi, xj, zij), i 	= j}n
i,j=1.

In this context, if the expert’s utility function were to apply a
inear model U(x) = wT

e x, then using (4):

ij = sign(wT
e xi − wT

e xj) = sign(wT
e (xi − xj)) (5)

f we resolve this classification problem following a soft-margin
pproach [10,13] and using the maximum margin hyperplane,
he problem is formulated as:

in
w,ξ

⎧⎨
⎩1

2
||w||2 + C

n∑
i	=j,i,j=1

ξij

⎫⎬
⎭ (6)

T (xi − xj) ≥ 1 − ξij; i, j = 1, . . . , n, i 	= j (7)

Bearing in mind that the points of the sample are now differ-
nce vectors vij = xi − xj, i 	= j, the solution takes the form:

ˆ =
∑
s.v.

αijzijvij =
∑
s.v.

αijzij(xi − xj) (8)

here the values αij are obtained from the resolution of the dual
roblem in (6) and (7).

In the most realistic case of a non-linear utility function, we
an use the kernel trick (references cited above; this consists of
ransforming the data in a space with a higher dimensionality
hrough a transformation � : Ω → Φ such that k(x, x′) = 〈�(x),
(x′)〉 is a positive definite function and so we consider the linear

unctions in this space:

(x) = wT �(x). (9)

The solution in (8) is converted in this case into:

ˆ =
∑
s.v.

αijzij(�(xi) − �(xj)), (10)

nd so the resulting optimum hyperplane is:

ŵ(x, x′) = ŵT (�(x) − �(x′))

=
∑
s.v.

αijzij(�(xi) − �(xj))T (�(x) − �(x′))

=
∑
s.v.

αijzij(k(xi, x) − k(xi, x′) − k(xj, x) + k(xj, x′))

(11)

n expression which means we can avoid determining and cal-
ulating the transformation �.

Consequently, the estimated utility function is:

ˆ (x) = ŵT �(x) =
∑

α z (�(x ) − �(x ))T �(x)

s.v.

ij ij i j

=
∑
s.v.

αijzij(k(xi, x) − k(xj, x)) (12)

p
a
t
t

us Materials 147 (2007) 60–66 63

Finally, to estimate the frontiers θ(rj), j = 1, . . ., c for the
ntervals of the utility function that the expert implicitly uses
n order to determine the ranks rj, all we need to do is bear in

ind that the pairs (xi, xj) that verify ξij = 0 have been classified
orrectly.

Therefore, if we choose a subset of pairs with ranks differing
y just one unit:

(s) = {(xi, xj) : ξij = 0, yi = rs, yj = rs+1}, (13)

he frontiers can be estimated through the mid-point of the clos-
st points that differ by just one unit in their ranks, in other
ords:

ˆ(rs) = 1
2 (U(x(1); w) + U(x(2); w)), (14)

ith:

x(1), x(2)) = arg min
(x,x′) ∈ A(s)

{U(x′; w) − U(x; w)}. (15)

ith these frontiers, the prediction of the rank that corresponds
o a new point x, is obtained using (2).

The main problem of the approach previously presented
esides in its implementation due to the computational complex-
ty of the problem (6) and (7) and in the necessary selection of
he model, that in the SVM supposes the selection of parameter

and the corresponding ones to the family chosen for kernel. In
rder to overcome this serious difficulty and to apply the previ-
us methodology, in this work we propose to estimate the kernel
sing the covariogram:

�(x), �(x′)〉 = k((x, x′) = Cov(Y (x), Y (x′)) = C(x − x′) (16)

ore specifically, an isotropic covariogram was used:

(x, x′) = C(x, x′) = C(0) − γ(x, x′) (17)

here the variogram γ was estimated using the values of the
ependent variable. This can be obtained merely by defining the
eature vectors as �(x) = Y(x).

Estimating k using the variogram enables the association
tructure contained in the data to be incorporated in the geometry
f the feature space (where the problem is resolved).

. Case study

With a view to construct the knowledge base represented
y the model in (1), 28.6 km of roadway located between the
panish regions of Castilla-León and Galicia were selected for
odelling. This road runs through a mountainous region lying

etween 495 and 1105 m above sea-level (the deepest part of the
alley and the highest part of the mountain pass, respectively).
his road, which was constructed over 20 years ago, has many
ends.

To study whether this road was suitable for pollutant sub-
tances transportation, the factors Xi, i = 1, . . ., 31 (defined in the

revious section) were analysed over intervals of 100 m. Also
nalysed was R, referring to the remedial measures necessary
o make the stretch of road suitable for transportation of pollu-
ants. Obtained as a result were 286 items of the form (X1, . . .,
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31, R). Of these, ntrain = 150 were used for the estimation of the
odel and ntest = 136 were used as a test sample to evaluate the

ehavior of the different techniques.
The evaluations of X and R are based on the knowledge and

xperience of human experts (a civil engineer and a Spanish
ivil Protection Service advanced technician), and so contain
n element of subjectivity. Nonetheless, some of the parameters
ere evaluated in an objective manner, such as, for example, the

xistence of slow lanes and protective barriers. Such subjectivity
an be reduced by making comparisons with other experts, using
echniques such as the well-known Delphi method. In practice,
owever, such a comparison is not feasible for the kind of prob-
em described here (in terms of the time and the human/financial
esources required).

Table 1 illustrates one of the data sheets used to record
he values for the parameters. It shows the values assigned
or five stretches of roadway, for both the parameters and the
esponse R. Table 2, which shows the results obtained using ordi-
al SVMs, also includes, for comparison purposes, the results
btained using linear discriminant analysis, neural networks,
ultilayer perceptron, support vector machines for classification

multiclass), and classification trees. The error percentages for
he different techniques were, respectively: 25.34% (linear dis-
riminant analysis), 15.06% (CARTs), 14.52% (MLPs), 14.49%
SVMs) and 13.19% (ordinal SVMs).

As can be observed, the machine learning techniques pro-
uced much more satisfactory results than linear discriminant
nalysis (with or without a reduction in dimensionality). The
esults for the MLPs and SVMs were similar, although with a
ifferent error structure resulting from their different configura-

ions (radial in the case of the SVM, and projection in the case of

LP). Finally, the ordinal SVMs produced the best results of all
n percentage terms, although there were no significant statisti-
al differences between this technique and the other techniques,

ig. 1. Map of a stretch of roadway indicating the remedial actions necessary
n order to make the stretch suitable for pollutant substances transportation,
n accordance with the different techniques used. Progressively darker colours
ndicate the need for more drastic remedial actions. Ta
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Table 2
Stretches of roadway for the test sample, classified according to the different models as requiring minor (L) or mayor (M) improvements, or as being unsuitable (H)
for pollutant substances transportation

Model Linear discriminant
analysis

Classification trees MLP SVM Ordinal SVM

L M H L M H L M H L M H L M H

Expert L 17 8 0 22 3 0 19 6 0 20 5 0 24 1 0
M 18 13 3 11 23 0 8 26 0 7 21 4 10 24 0
H 0 6 71 0 6 71 0 6 71 0 3 74 0 6 71

The expert’s classification is given in the rows.
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ig. 2. Utility function for the stretches of road in the training sample (numbered
equentially).

ith the exception of linear discriminant analysis. The low level
f ordinal SVM error obtained would indicate that the non-linear
odelling of the ordinal SVMs is capable of reproducing expert

riteria with great accuracy.
Fig. 1 depicts the map of interventions in the road according

o the different techniques used. The estimation of the inter-
als [θ(rj−1), θ(rj)] for the ranks rj = 1–3 (see Eq. (2)) were,
espectively: (−∞, −5.73], [−5.73, −0.72], [−0.72, ∞]).

Fig. 2 shows the utility function for each of the 150 stretches
f roadway represented in the training sample. This function
rovides a continuous justification for the expert’s opinion in
valuating the stretches of road. Even though the information
rovided by the expert is discrete in nature ({1,2,3}), the util-
ty function enables the true intrinsic quality to be assessed for
tretches scored by the expert as having the same quality. Thus,
s can be seen in Table 1, even when the expert classifies the sec-
nd to fourth stretches as requiring significant remedial work,
he last of these stretches is in better condition than the other
wo.

. Conclusions
In this paper we have constructed a model for assessing a
oad’s suitability for pollutant substances transportation that
ncorporates expert knowledge. The model can be applied on

[

[

large scale to other roads without the direct intervention of
n expert, although expert supervision would be necessary. To
stimate the model, a support vector machine approach applied
o ordinal data was compared to linear discriminant analysis and
ther machine learning classification techniques.

The ordinal SVMs performed similarly to other machine
earning techniques, and without increasing the computational
urden to any significant extent. Moreover, the ordinal SVMs
rovided an estimation of both the expert latent utility function
nd the decision rule used to determine the level of risk for each
tretch of roadway. The positive results would demonstrate the
enefits of tackling such problems as ordinal regression prob-
ems rather than as mere classification problems, which focus
n classification errors and fail to penalise inversion in the order
f the examples.
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[9] R. Martı́nez-Alegrı́a, C. Ordóñez, J. Taboada, A conceptual model for
analyzing the risks involved in the transportation of hazardous goods:
implementation in a geographic information system, Human Ecol. Risk
Assess. 9 (2003) 857–873.

10] V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York,

1998.

11] L. Breiman, J.H. Friedman, R.A. Olsen, C.J. Stone, Classification and
Regression Trees, Chapman & Hall, 1984.

12] S. Haykin, Neural Networks. A Comprehensive Foundation, Prentice Hall,
Englewood Cliffs, New Jersey, 1999.



6 zardo

[

[

[

6 J.M. Matı́as et al. / Journal of Ha

13] B. Schölkopf, A.J. Smola, Learning with Kernels, The MIT Press, Cam-

bridge, MA, 2002.

14] J.M. Matı́as, A. Vaamonde, J. Taboada, W. González-Manteiga, Sup-
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